If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x+4=4900
We move all terms to the left:
2x^2+4x+4-(4900)=0
We add all the numbers together, and all the variables
2x^2+4x-4896=0
a = 2; b = 4; c = -4896;
Δ = b2-4ac
Δ = 42-4·2·(-4896)
Δ = 39184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{39184}=\sqrt{16*2449}=\sqrt{16}*\sqrt{2449}=4\sqrt{2449}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{2449}}{2*2}=\frac{-4-4\sqrt{2449}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{2449}}{2*2}=\frac{-4+4\sqrt{2449}}{4} $
| 14=8+y | | -6(4x-8)=-3x+3 | | x|2+x|3-x|4=14 | | 4x+9=5x-64x+9=5x−6 | | –90=j+–3 | | -2(a+1)+3a=9 | | 2(x-4)-9=21x-245 | | 5x-12÷3=6 | | 5(x+3)-2(x+1)=-20 | | 3(a-5+19=-2 | | 25=6x-4 | | 10+3a=34 | | 2x^2+4x+4=70 | | t-15=-20 | | 20x+40=40x+2020x+40=40x+2020, | | 7x+17=-20 | | 2x-5=5x+2x+13 | | 6x+8=3x—13 | | -2(5y-1)=8y+2y+7 | | 2(y-3)+3=13 | | 0=15g-13+14 | | 6a^2(-25a-24)=0 | | 9(z−3)= −9−9 | | 23=8-8x-7x | | 0.05(x-5)-0.08=1.01 | | 5x+2=3x+6. | | 0.2x+800=0 | | 0.2-800x=O | | 31x+969x-23=25(40x+27) | | x/6-14=1 | | 6(2x-5)=4x-2x+2 | | 7n-4=12 |